Assessment Schedule - 2005

Physics: Demonstrate understanding of mechanics in one dimension (90183)

Evidence Statement

Q	Evidence	Evidence contributing to Achievement	Evidence contributing to Achievement with Merit	Evidence contributing to Achievement with Excellence
1(a)	One pascal is a force of one newton applied over an area of one square metre.	¹ mentions force per unit of area / Nm ⁻² .	¹ Correct explanation.	
1(b)	$F = mg = 88 \times 10 = 880 \text{ N}$ $A = \frac{F}{P} = \frac{880}{733} = 1.2 \text{ m}^2$	² Correct answer for force.	² Correct working and answer.	
1(c)	$v = \frac{d}{t} = \frac{2.8}{0.70} = 4.0 \text{ ms}^{-1}$	² Correct working and answer.		
1(d)	$v = \frac{d}{t} = \frac{2.8}{0.40} = 7.0 \text{ ms}^{-1}$ $a = \frac{\Delta v}{\Delta t} = \frac{7 - 4}{5.0} = 0.60 \text{ ms}^{-2}$	Correct working and answer for velocity. Replacement for 1(c).		² Correct working and answer.
	Unit is ms ⁻² .	¹ Correct unit.		
2(a)	Gradient of the line = $\frac{8-2}{10}$ = 0.6 ms ⁻²	² Correct answer.		
	Unit is ms ⁻² .	¹ Correct unit. replacement for 1(d)		
2(b)	Area under the graph = $(2 \times 10) + (0.5 \times 10 \times 6)$ = 50 m	² Uses the concept that area is the distance but calculated it wrongly.	² Correct working and answer.	
2(c)	B – Moving at a constant velocity (of 2.0 ms ⁻² .) C – moving at a constant acceleration (of 0.4 ms ⁻² .)	¹ B – constant velocity. C – acceleration / increasing speed.	¹ B – constant velocity. C – constant acceleration.	
2(d)	Gradient is zero because the object has zero acceleration/moving at a constant velocity. This is because the driving force and the friction force cancel each other. So the unbalanced force on the board is zero (producing zero acceleration).	¹ Gradient is zero because the object has zero acceleration /moving at a constant velocity/z force.	¹ As for Achievement plus the forces are balanced/ equilibrium/zero net force.	¹ As for Merit and clear explanation showing understanding of the actual forces involved.
2(e)	Friction Driving/thrust / wind/push force	¹ Correct directions : correct sizes/names.	¹ Correct answers.	

Q	Evidence	Evidence contributing to Achievement	Evidence contributing to Achievement with Merit	Evidence contributing to Achievement with Excellence
2(f)	Gradient = acceleration $= \frac{6-2}{30-20} = 0.4 \text{ ms}^{-2}$ Force = $m \times a = 88 \times 0.4 = 35.2 \text{ N}$	Correct working and answer for gradient. Replacement for 2(a).	² Correct gradient and correct working for force but wrong answer.	² Correct working and answer.
3(a)	$3.5 \text{ ms}^{-1} \longrightarrow -1.6 \text{ ms}^{-1}$ $= 5.1 \text{ ms}^{-1} \text{ to the right } (\longrightarrow)$	² Correct answer with no/wrong direction.	² Correct answer with correct direction.	
3(b)	$E_{k} = \frac{1}{2} m \times v^{2}$ $= \frac{1}{2} \times 70 \times 1.6^{2}$ $= 89.6 \text{ J (90 J)}$	² Correct working and answer.		
3(c)	$E_k = \frac{1}{2} m \times v^2$ $= \frac{1}{2} \times 88 \times 1.2^2$ $= 63.36 \text{ J}$ $F \times d = 63.36$ $F = \frac{63.36}{0.70} = 90.5 \text{ N (91 N)}$	2 Correct working and answer for E_k .	² Correct methods and working, but wrong answer.	² Correct working and answer.
3(d)	Towards Lee/opposite to the board's direction of motion/backwards/towards the board/against the board/into the board.	¹ Correct answer.		
3(e)	$E_p = mgh = 5.6 \times 10 \times 1.1 = 61.6 \text{ J}$ $t = \frac{E}{P} = \frac{61.6}{34.2} = 1.8 \text{ s}$	2 Correct working and answer for E_p .	² Correct methods and working, but wrong answer.	² Correct working and answer.
3(f)	One watt is one joule per second.		¹ Correct explanation.	
3(g)	(1) Work is done when a force acts along the direction of motion.(2) Here the supporting force is upwards while direction of motion is forward / right angles to the force, so no work is done.		¹ Given statement (1).	¹ Correct and clear explanation including both statements.
4(a)	Downwards	¹ Correct direction.		
4(b)	$\frac{1}{2} m \times v^2 = 728$ $v^2 = 728 \times \frac{2}{91} = 16$ $v = 4 \text{ ms}^{-1}$	² Correct substitution but wrong answer.	² Correct working and answer.	

Q	Evidence	Evidence contributing to Achievement	Evidence contributing to Achievement with Merit	Evidence contributing to Achievement with Excellence
4(c)	(1) Principle: Conservation of energy. All the kinetic energy at the beginning of the motion is converted to gravitational potential energy at the point P. (2) Assumption: No kinetic energy is used to overcome friction (converted into heat).	Mentions conservation of energy (may describe energy changing from gravitational potential to kinetic.)	¹ Explanation shows a clear understanding of the situation, but fails to state the assumption.	1 Explanation shows a clear understanding of the situation and states the assumption.
4(d)	Sail area experiences air resistance to his downward motion, so his actual speed is smaller than the calculated value.	¹ Mentions air resistance/friction	¹ Answer linking air resistance to slower speed.	
	Total opportunities	criterion 1: 9 + 1R criterion 2: 10 + 2R	criterion 1: 7 criterion 2: 7	criterion 1: 3 criterion 2: 4

Judgement Statement

The grade awarded is the highest one that has been demonstrated in all achievement criteria up to and including that grade.

The following is a guide to the standard required for each grade in the two criteria.

Criterion 1

Achievement	Achievement with Merit	Achievement with Excellence
FOUR opportunities answered at Achievement level or higher.	SIX opportunities answered with THREE at Merit level or higher.	SEVEN opportunities answered with at least ONE at Excellence level and THREE at Merit level.
4 × A1	3 × M1 plus 3 × A1	1 × E1 plus 3 × M1 plus 3 × A1

Criterion 2

Achievement	Achievement with Merit	Achievement with Excellence
FOUR opportunities answered at Achievement level or higher.	SIX opportunities answered with THREE at Merit level or higher.	EIGHT opportunities answered with at least TWO at Excellence level and THREE at Merit level.
4 × A2	3 × M2 plus 3 × A2	2 × E2 plus 3 × M plus 3 × A